Part II Tripos Bookwork Solutions

FCM

1. Green’s. Sﬁc Ldx + Mdy = ffD <8M %) dzdy. Stokes’. ffD VXF-dS = fﬁaD F - dr.

2. u(z,0)= 1P [7 Y0 gt v(z,0) = Pf_oo

co t—x

Define f(z) = f(Z), then 2u(x,y) = f(x +iy) + f(z — iy).

Define z = z + iy, w = x — iy then 2u(Zt%, 22%) = f(2) + f(w) = f(2) + f(0). Set zg = @

t—x

const..

: n!n®
3Tz = I )

z(il—lo n) n -
Define l(z) = Z(ZJFQ,;L;(HTL) =L [T e7= (1 + ). Take limit.
" ’ s=1
4.T(z fo t*~le7tdt, Rez > 0.
Identities:
I(2)P(1 - 2) " (Euler)
z —2) = uler
sinmz
27T(z + 1)I(2)
= 2 Bet
T(22) /7 (Beta)
1 1o
—_ = — t*etdt Vz € C.
T(2) omi ) 0 CTF

B(z1,29) = f r271(1 — z)? Yz, Rez;, Rez > 0.

I'(z)T'(22)

Identities: B(z1, 22) = NEETA

C(s):=>n"* Res>1.
n=1

Identities:
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((s) = ng) /000 ;s— 1dt, Res > 1 (Gamma)
C(s) = F(;;. ) /_Oo e’f—_ _dt ¥s € C\{1}
s-1ce) == G [ e o
(272r)5<(1 —s) = ((s)I'(s)cos %

5. Elliptic functions are doubly periodic meromorphic functions.

Properties: 1) integral around a fundamental cell is zero; 2) no single simple poles; 3) if no

poles then no poles in C and thus C;4) N— P = o8 f’(c;()z_)cdz = 0 by periodicity.

¢'(z) is odd and doubly periodic, so p(z) — const. is doubly periodic where const. = 0 by

even-ness. Obtain
0 (2)° — 4p(2) + g20(2) + g5 = O(2%)

but the RHS is doubly periodic and analytic so by Liouville must be constant zero as z — 0.
6. 21q(2), 22 — 2?p(z) bounded at infinity.

7. For hypergeometric equation z(1 — 2)y” — [¢c — (a + b+ 1)] ¥’ + aby = 0, the Papperitz
symbol is
0 1 00
P 0 0 a z
l—c c—a—0b b

e aNE /! a b c T(a) T(b) T(c)
( ) ( )P a [ v zp=Psa+k pf-—k—-1 v+ T(z)
of B o +k B —k—1 v +1

o R nTatn)T(bin) T X pn D(atn) T(o)
F(a,b;c; 2) —Z W T@r®)  T(ein) —ZO I T(a)T(b) F(c—b)B(b +n,c—b).

Then use (1 —tz)™* =>_ (272” F(F“(Z;‘) Reb, Re(c —b) > 0, |z] < 1.

CD

1. Given that the end points are fixed, the path taken by the system in configuration space is
an extremum of the action.

2. Holonomic constraints are f,(x,t) = 0 where f, : RxC - R, a = 1,2,...,3N — n.
A one-parameter group of transformations ¢;(t) — Q;(t,s) where Q;(¢,0) = ¢;(t) are a

2
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continuous symmetry of the Lagrangian £ if 2 £(Q;(t, s), Qi(t,s),t) = 0Vt. The associated

9L 9Qi
Jq4; 0Os

conserved quantity is » :
i s=0

3. X = Xy is an equilibrium point for the equation of motion X = f(x) if f(x() = 0. Perturba-

tion x = xo + 7)(t) satisfies 7j = — F'n where eigenvectors of I are normal modes.
4.T=1 i r?=1 i <wawar(2i) — r(i)ar(i)b> = swalppwy, SO
[ drp(x) [ rp(x)
2o
Loy = { : (r*0a = TaT (i) -
J &rp(r)

Withr 1 — ¢, Iy > Ly + M (c20qy — CoCp).

5. Rop = €, - €, €, = Ryp€, where r = rpe,(t) = 74 (t)€,. dea _ 3 (R71),, e

Define w,, = (RR™")4. Have
dL . .
o = Le.e.+ Lywpey, X e, = Lee. + egpgLlowpre. = 0

so 0= LC + €evaliaWs.

6. €, = Rup(0,0,1)€é, where
(e} " o) T (e} T feu).
Have w = ¢es + «9e/1 + weg SO
w= <¢sin98mw + 9(:051/1) e + (ésin@cosw — ésinw> e+ <w + écos@) es.
You should be able to draw the diagram.

0 I

T _ _
7. KJK* = J where J = (_[ 0

) and K is the Jacobian.

8. The action-angle variables are a canonical transformation (¢,p) — (0,1) s.t. H(q,p) =
H(I), in which case by Hamilton’s equations the system can be integrated up.

1
I = — ¢ pdg.
27Tygpq

9. A function I(p, ¢, \) is an adiabatic invariant if [I(¢) — I1(0)] = O(e) Vt : 0 < t < L where
T is the period of the parameter \. The action variable is an example.



Part II Tripos Bookwork Solutions © Mike S. Wang

C

1. Homogeneity and isotropy. vii = v9 — v but velocities must be a function of relative

positions so v(rg —ry) = v(rg) — v(ry), i.e. velocity is linearly related to relative position
v = Hr.

2. 2 101K, {e*, v, vand v}; 5 x 109 ~ 10" K, {e*, v}; < 5 x 10°K, {~}.
3. Matter-dominated. z < zeq, a 1%7 p=—ts T t75.

6mGt2”

10
T ~ IOIK.

c . . 1 o 3
Radiation-dominated. z > z.q, a2, p = 355, .

2
3= _ 1
KCY.CLOCt3'Y, P = m

4. “He does not depend sensitively on Pbaryon DUt D and 3H do.

5.
: a _
n+ 3-n = —g;i{ov)ynn+ II(¢)
a —_—— ~—
annihilation production

depletion due to expansion

At equilibrium, relax to H =0, n =n, n = 0 so

and

n+3Hn = g;(ov) (n2, —n).

eq
Change of variable gives

ay A
= 5 (P -Y)

dr a2
where A is a const.. Now z > z,, Y > Y, Vi > Y.
6. Flatness. £ = 0 solution is unstable, but the observed universe has very low curvature (or
low energy density associated with curvature, or close to critical density so ’fine-tuning’).

Horizon. Remarkable homogeneity and isotropy in regions with no possible causal contact
due to finite light speed.

Inflation. A finite period of accelerated expansion.

Conditions: @ > 0 requires 37 < 2 < p+ 3P < 0 so density falls slower than curvature term.
Accelerated expansion means regions far apart could have been in causal contact.

7. < ‘3ng5‘ , V'(¢) and %QSQ < V. e-fold number

a Qe te
N = ln—e:/ dlna:/ Hdt.
Qi a 4

1

4
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8. Linearised % =—poV -V, %—‘t’ + ;—EVpl +V®, =0, V20, = 47Gp,.

AM
1. Suppose g(t) ~ t* > a;t"7, |g(t)| < Ke" some K, b > 0, then for a > —1,
j=0
* ~ T(a+rj+1)
rt
/0 et ~ Y 4
=0

as & — Q.

2. f~gasz — xoif f(x) = o(g(x)).

{on(2)}5°, is an asymptotic sequence if as x — xg, ¢p11(z) = 0 (Pn(x)) Vn.

0 N
f~>" andn if {¢,} is an asymptotic sequence as © — zp and f— > a,é, = o(pn) VN.

n=0 n=0
Uniqueness.
_ o S
“ T G
n—1
@ T e
T awm

Optimal truncation. Truncate the series at n = N, s.t. the first excluded term has the least
magnitude.

3. Recall 62% = @(x)y has Liouville-Green approximations

y~ AxQ(a)het VI g g
v~ Ap |QUa)[TF e TVIREI g <]

So for the Schrédinger equation, set Q(x) = V(z) — E, then
r<az, y~ AV(z)—E) Y exp (—% /I1 \/mdx’>
Ty <x < Ty y~ 24|V(x)-— E|’1/4 sin (% /I mdm' + %)
x1
T >19, y~ 2B(V(z)— E) Yexp (—% /x \/mdx’>
2
T <z <x9, y~ B|V(z)— E[*sin (%/12 mdx'+%>
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but matching phase means

1 To 1 x
sin (—/ \/|V(1:’)—E|dx’+%) = sin <——/ \/]V(Jc’)—E|dx’—%+A+g>
€ x € Tl

50
1 [* 1
A= —/ VIV(z) = E|de = (n+ 5)7T
€ Ju
For 4y = —EQ(x)y on interval [0, L] where £, ) > 0 and boundary conditions are set

y(0) = y(L) = 0, have

y~ E7VQ(a) [a sin (/Oz \/mda:’) + bcos (/OI \/mdx’)}

and by b.c. have b = 0 and

LG

(ff ¢Q<w>dw> '
IS

1. A flow map x = ¢°xq is generated by a vector field V if X = V(x), x(0) = x¢. It has
properties: ¢° = ¢, g'¢° = g'™* and g~ = (¢*) 7.

Vi, Vo] = (V1 :0x) Vo — (V7 - 0x) Va.

0 0
o = Loy, o

A Hamiltonian system x = J2Z = v (x). Now [v;, v,] = —v{; ;3 shown by acting .0xh and
using the Jacobi identity.

2. Scattering data S = S U {T'(k)} where S = {{xn, c,(t)}2_,, R(k)}.
Define

[e.9]

N
1 .
Fr: — 2 —XnZ el ikx
(x;t) Eﬁ c(t)e +27r/ e R(k)dk

and K (x,y) to be the unique solution to
F(r+y)+ K(z,y) +/ K(x,2)F(y+2)dz = 0.

Then u(z) = —2-L K (z, z).
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N
Reflectionless. F(x;t) = c¢2(t)e X»* and must have the form
n=1

N
K(x,y) :Z K, (z)e XY,
n=1
Substitution yields
AK = —c
where
K = (Ki(z),...,Kn(z))
c = (CQe_X””, ,C?Ve_XNx)
Anm - 5nm+cq21
Xn + Xm
Aimm _ o2 e~ Oentxm)z
Hence
N N
Kz, z) = > Y (A )md,, =tr (A" A) = (logdet A)’
m=1n=1
and

u(z, t) = —202log det A.

3. L = [L, Al so M) = Loy + Lpy — My, = (L — N)(¢h + Ap). Now 0 < X [[¢]* =
(L =N, ¢ + Ap) =0s0 Ay = 0and Ly)' = A\,

4. An evolution equation is Hamiltonian form if written v, = J0H for some functional
H = Hlu| and antisymmetric linear operator 7 s.t. {F, G} = (0F, J0G) defines a Poisson
bracket.

Flu+ en] = Flu] + € (0F,n) + o(€) where
Flu] = /f(:c,u, Uy, . .., u'™)dz

where n®) — 0 as || — oo, so

_af of , Of
oF = ou Da ou,, +Ds OUgy
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5. 1u) = [ u(z,u, uy, - - )dx gives

: 0 0
Iu] = /(uta—;+umﬁ+--- dx

~ —

oL o
= ——D,— d
/ut ((9u Ouy * v
_ (gt s1)
= {I,H}.
6. Given Az, u, U, ..., u™] =0, ¢°: (x,u) — (Z,7) is a Lie point symmetry if

where pr™g¢ : [z, u, up, ..., u™] = [Z, 4,0z, ..., a™] is the n-th prolongation. Equiva-
lently, pr™V A = 0.

V = % le=0g°x. Common transformations are V = a0,, = &; = z; + ae, V = f2,;0,, =
ii'i = 6'861‘1‘.

For

T = x+e(r,u)+ ofe)
u = u-+en(x,u)+o(e)

a® = u® 4 eny + ofe),
0 0
pr™WV = V4 Z MO,y k)
k=1

have prolongation formula
M1 = Dy — u™ D,

) . - ik
To see this, use the contact condition di* = % dx, so
dxr

LHS = (u(k“) + ernk) dx + o(e)

RHS = a1V (1 + eD,€) dx + o(e)
and a* ) = (u*) 4 €D ) (1 — €D,€) + o(e) = ulF ™Y + € (Dynp — w1 D,E) + ofe).
Finally:

)= 4
:>.0_d5

e=0 gex ) g_fc‘<gex)|€=0 =VFE.

<:Let S = {x: F(x) = 0} then VF = 0 =V is tangent to surface S. Hence g° maps S to
itself, i.e. F'(x) = 0 implies F'(¢g°x) = 0.
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PQM

L (zlp) = S (pla) = o=, (wla’) = S(x — 2'), (plp) = 6(p — p).
Completeness. [1)) = 3=|xn)(Xalt)) 50 3|xn){xa| = T etc. Hence [v)) = [ da)(z)|a) =

J dpé(p)lp)
Further, (x|p|z’) = —ih0.0(x — '), (p|Z|p’) = ihd,d(p — p'), and

WV @) = / I / 0 == 0P (1))

- / ay WV@ — ()

so the Schrédinger equation becomes in momentum space

2.alln) = v + Ln + 1), aln) = v/aln — 1), [n) = <2 |0).

3. Notation. H = Hy + €V.

Non-degenerate case.

\_/

|J|V|n
E = EO +en|Vin) + Z 0) O(é
J#n

) = <\n DY ]'V'” '+O<62>)

J#n

where N = 1 + O(e) is an overall normalisation constant, and superscript () denotes the
unperturbed eigen-energy for |n) and |7) 4.

Degenerate case. £ is the eigenvalue of the matrix V,, = (s|V|r) where |r), |s) are eigen-
vectors in the degenerate eigenspace V). There are typically dim V), solutions.

(01 (0 —i (1 0 h
4.01—(1 0)702_(1' O),Ug—(o _1).HaveS—20

Properties: 1) 0;0; = 6;;1+ihe;j,0%; 2) 0,0, = [(nos.c.);3) (a-0)(b-0) = (a-b)[+i(axb)-o.

5. —j <m < jand j £ m are integers, so j € Z (orbital) or Z + % (spin). Note there are 25 + 1
steps in between. JJz = J? — JZ + hJs.
Jitj2
6. Note thereare ) (25 + 1) = (2j1 + 1)(2j2 + 1) states.
J=li1—jel

7. A unitary transformation U is a symmetry if [U, H] = 0 < UTHU = H.
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8. The time evolution operator is U (t) = e~*Hot/h,

Interaction picture. [)(t)) = e'Hot/P|y(t)), V (t) = eHot/MV (t)e~Hot/h H = Hy + €V (t)
Equation of motion. iid|1)(t)) = €V (t)|1(t)).
Integral equation. [¢(1)) = [1(0)) — & [ dt'V (t')[)(0)) + O(e?).

Transition rate. Assuming (f|i) = 0,

/ dtl ’Lt

. ) = |[¢) ® |@), the (reduced) density operator is p = | V) (V|
(5 = [t} (). Have for @ = Q &,

2

VD] + O,

62

h2

P(t) =

<Q>\1/ = tr(Qp)
(@) tr(Qp)

where p = diag(p;) when diagonalised.

FD II

1. On physical grounds, stress is symmetric and includes an isotropic pressure term and a
deviatoric term that is instantaneous and linear in Vu: 0;; = —pd;; + U%e"(Vu).

Suppose adev = A kl% where rank four tensor A must be isotropic:
Ajjrr = 110450k + p20i051 + (130705,
then 0¥ = 2pe;; by incompressibility and symmetry.

2.
d 1
dt
TV
rate of change of kinetic energy kinetic energy flux over boundary

/pu-FdV + / u-o-ndS —/(U~V)-udV
ov v
: , R

J/

1
pudV + /—pu2u-ndS =
av 2

J/

TV
power against body forces power against surface tractions dissipation

where 0;;0;u; = —pV - u+ 2pue;;(e;; + Qij) = 2pe;;e;; = P by incompressibility and anti-
symmetry.

3. Instantaneity: instantaneous response to forces and boundary conditions. Linearity(:) of
the velocity and pressure fields to forces and boundary conditions. Spatial and temporal re-
versibility.

10
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4. [, 2ue;edV = [ (o5 + p55¢j)(37“; — Qy)dV = [, 05,0;u:dV = [ 0fn;u;dS by incom-
pressibility, antisymmetry and Stokes’ equation.

Minimality. [}, 2uef;ef;dV < [, 2ue;ze;;dV for a Stokes flow u® and an admissable flow u
satisfying the same boundary condition.

Jo 2neijeidV = [ 2ues;es;dV + /V 21 (€5 — €5;) (ei; —€5;) dV + [/4pefj (eij —€5;)-

VvV vV
>0 2 [g o5 (ui—ui)dS=0

Reciprocity. Set u® and u to be two Stokes flows u" (), then [ ag)njuz(-Q)dS = /s Jg)njugl)dS.
Consider rigid body motion u®™-@ | =U®:® 4 QW-@) x x, then

—_UL . F® ). g® = _gh.p@ _ o0 .qg®
since [ ag)nj (Q® x X)Z. ds = Q@ . Jox % oW . ndsS.

5. Assumptions. u = [u(y, z, t),0, 0] by incompressibility, F = 0, p = p(z, t).

Equation. p% = —Z—I; + 1 (‘2273 + g%‘) where by variable dependence p, = const..

6. Assumptions. h < L and rRe < 1. Pressure gradient balances viscosity.

Simplification.
ou n ov 0= h -
i gv v="u < u
dxr ~ Oy L
N~~~
u/L v/h
0 82; 82
P % L,L \p/ p 2 < ayz
u2/Lr~uv/h p/L e \l/h/z
sopw%and%ZT%_
~—~
Re
*v
u-V)v=— 4o —
u < \pf/ 3 H 0y?
puv/L~pv? [h pul/h3 ~—~
v /h?
so p = p(x).
Equations. u, +v, = 0,0 = _3_1; + ug%.

7. Assumptions. Adopt Euler’s limit outside the boundary layer. Pressure field set by external
flow to the boundary layer. Inside the layer viscosity is balanced by inertia.

11
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Simplification.

<8u ou 8u) 0? 0?
P FTUu- TV ) =—Datp| g5t 55| U

ot ox dy 0x? < 0y?
-~ ~—
pu2/L 1/L2 1/52

sod = %,Apx ~ pU?2.

P\ ot Ox oy ) ~ \pf/ “ay2
. " Apy/5 \\,-/

puv/Lepv? /§ v /82

so Ap, ~ pU? (%)2 < Ap,.

Equations. u, + v, = 0 and

%_‘_ @_‘_ % — 8_U+U8_U + @
P Yor — P\ ot ox 'uﬁyQ

subject tou — U as y/d — oo.

8. V x N.S. where written (u- V)u = Viu? —u x (V x u),
p{%—%—Vx(uxa_u)} = uViw
but then
ow 9
— 4+ (u-Vw=(w-V)u+rvVw.
ot ~— L= L =

advection amplification diffusion

Usually diffusion away from the boundary is balanced by advection towards the boundary,
leading to vorticity confinement.

9. Kelvin-Helmholtz: velocity shear. Taylor-Rayleigh: density difference.
Set-up. 11172 = (ULQ, O) + V(,OLQ.
Boundary conditions. 9;n + (U + 0,p) 0, = g—;j, p (atSO + su? + E+ 99) = f(t).

Linearised kinematic boundary condition. 9;n + U; 20,1 = ag—;? aty = 0.

Linearised dynamic boundary condition. p; (01 + U101 + gn) = p2 (Opp2 + UsOrp2 + gn)
aty = 0.

SP

1. Microcanonical ensemble. NVE-ensemble.

12
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dE = dQ — pdV = TdS — pdV, S(E) = klog Q(E) =

oE oFE oS
T = — = — — T—
as|, P~ avl, T T av|,
or oS oS
= —| =T— =T—
“=ar ,aT|, G = or |,
Canonical ensemble. NVT-ensemble.
Z =>ePEn p(n) = esz”, or = —k(%05 =
0
(E) = ~95 log Z
0 9?
AE? = —— —log 7
aﬁ< > 852 0g
0
S = —k;pm) log p(n) = ka_T (T'log 2)
1 0?2 9

F = E-TS=—-kTlogZ.

Grand canonical ensemble. uVT-ensemble. u is the energy cost to add a particle to a system
while holding S, V constant.

Z — Zefﬁ(Enf,u,Nn)’ p(n) — e*fe(En*HNn)’ 86 — _kTQaT =

Z
(B} = niN) - 5 log2
(N) = %%mgz
AN? = %%(N)
S = —kZp ) log p(n —k;@%(TlogZ)

o = E—TS—MN—— (T, )V = —kTlog 2.

In the thermodynamical limit N — oo, energy and particle number fluctuations are small and
close to the average, so three ensembles coincide.

E

m’U2
2. Boltzmann distribution. p(n) = -~ —. Maxwell distribution. p(v) = Nv?e~ 2. Planck
ZQ_W
. . . o 3 . . . . o 1 . .
distribution. p(w) = 6%“;—71 Bose-Einstein distribution. (n,) = —5z=5—. Fermi-Dirac

1

distribution. (nr> = BB 11

13
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NB.P: Z, =) e P = - e—ﬁﬁw = InZ = fo w)In Z,dw; B-E: Z = [ e Prr(Er=n)
and F-D: Z = Y e #(Er—n),

r n=0,1
3.p=X kg\, — a%, a captures the effect of the attractive interaction at large distances. b is

the effectlve reduction in the volume of the gas due to space occupied by the particles, arising
from the repulsive potential.

4. High temperatures ( — 0, low temperature ¢ — 1. 7 is the temperature at which ¢ = 1.

5. gn = n) fO z—leT 1 = i 51_72 gn(1> = C(n)

m=1

+ —n (log z)

/OO ! q (log2)"*" 72 n—1
T = :
o 2z ter—1 n+1 6

6. Energy. dEl = T'dS — pdV + udN (first law).

Enthalpy. H(S,p) = E +pV.

Helmholtz free energy. F(T,V)=E —TS.

Grand canonical potential. & = £ —T'S — ulN.

Gibbs’ free energy. G(T,p, N) = E =TS + pV = u(T,p)N.

7. An adiabatic process is one that occurs without transfer of heat or matter between a ther-
modynamic system and its surroundings. In an adiabatic process, energy is transferred only

as work and dS = 0.

A quasi-static process is a thermodynamic process that happens slowly enough for the system
to remain in internal equilibrium, i.e. infinitesimally close to eqlb.

A reversible process is one that is reversible without increasing entropy.
A Carnot cycle consists of: an isothermal expansion, an adiabatic expansion, an isothermal

contraction and an adiabatic contraction.

8. The coexistence of liquid and gas in equilibrium requires the same pressure (mechani-
cal), temperature (thermal) but further requires the same chemical potential (matter) ftiquia =

Leas = Gliquid = Ggeas. Have dp = % dp = + 9G dp = %dp and integrate from

Plr N Op N
DPliquid-
9.m = %Z (s;) = A}ﬁalggz since Z = {23}6_5}3[51 = —JZSzSJ BZSi'
(A S (A

Mean-field theory.

1
Zsisj = Z \(si —m)(sj — m)/+ m(s; +s;) —m*| = qusi — §qu2

(i7)

TV
small when summed

N
s0 7 = e~ 3BINgm? ( > 6636351') as if independent where By = B + Jgm.

s;==%1

14
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GR

1L.1% =20 (Goae + Gedp — Gbesd)-
VoThe = Thea — D0 Toe — T Tha
vCLT’bc = Tbc,a + Fbaddec - Fdachd
vaTbc — Tbc,a + Fbadec + Fcadde-

ai...an _ 9z 9z rpay...an ozl fabm
2. For a tensor, T By B — 021 Qzan T brobm T B
s (Cixrd . ‘a _ 9z 9z°pa  9z° 9%z 9z
For the Levi-Civita connection, I" =5 e e T 5707 Dt
3. Recall T* = a)\ Lye = ai.
S

1) VyTe = VgV =22 4 1o, TV,
2) ViyVnQ* = (VeTPHVQ") — (Ve VIHVIQT) + TPVeV.ViQ* — VTPV, V. Q%

0
3) D2V = VoV Ve = ViV T¢ = V5T — R%, T"VT then relabel.

4. The Ricci identity. 2V [,V V¢ = R¢,,,V® and 2V, VyN. = —R?
tel’lSOI’ Rcdab — 2rcd[b7a] + Fce[areb]d‘

capNa Where Riemann

Symmetries. 1) Ripyed = Rapedy = 05 2) Raved = Redas 3) Rajpea) = 0 (Bianchi’s first); 4)
Rapjea:e) = 0 (Bianchi’s [second]).

Proof:

1) By definition. By 0 = gap;jcq) = =R yqc9eb — B pgeea = —2R(ab)ed

2) Repeatedly use 1) and 3).

3)0 = i) = 0 = jap- But ¢apg = —LR?, ;6.4 and ¢ is arbitrary.

4)In LIC,I' = 0 50 Ruped;e = Rabea,e then use definition of R obtain Ruped,e = 1'% cc — I ge-
EFE. Gy, = KTy, — Agy, where k = 8:—4G and G, = Ry — %Rgab which is divergence free.

W

1. Acoustic velocity potential ¢ satisfies the wave equation with wave speed 2 = Z—Z .
PO

The linearised perturbation relations are

u = Vo
o= pc
. Op
I = pu

~

where for a plane wave p = pycou - k.
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The thermodynamic relations are

The mechanical energy equations is

2. If = Qeilkx—wt) g — Peilkox—

e} 0
3. Gas. 3 tuzl +pg—g =0(1), %—;‘+ug—g+

oh oh ou _
Shallow-water. 5} + ug; + hgr =03

Q= ["an, c = \/gh.

4.

and with w5 = w10 — V.

5. Oy = Aéijekk + 2ueij.

L p
e —= _—
y—1p
02 = f}/g
p
- ()
Do Po
1 1¢2
oo+ 50 [ vI=0
2 2 po
——
Ep ,
“!) then
1 *
wwtzﬁRe«)@y
c? c . /
7% =0(2). £5(1)+(2) = Ousing @ = [’ %dp’.
L Qe g% — 0 (4). +,/7(3) + (4) = 0 using
p1ur = P2us
L+ = pa+ pou)
1
o+ = e+ 2
P1 2 P2
hlul - h2u2

1
§gh§ + hots.

interface

boundary conditions

rigid

free
solid-fluid
solid-solid

u=20

c-n=20
u~n|J_r:O,n-a'n:—p,n><a‘n:O
uf=0,0-n"=0

16
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6.c2:%<02:—’Hf“.u:V¢+VxywhereV%—é%:OandVZQ—iB—QZQ:O.

cZ o2
1) P-wave: ¢ = Aei(k'x—wt)’ u= Z'kAei(kx—wt);

2) S-wave: ¢ = Belk*xw) SV u = j(k x B-2)ze'®** % and SHu = i(2-B)k x
5 oi(k-x—wt)
ze .

7. Equations.

Dp
Dt
Vu = 0

Du

Z= — _VUp-— pgz
P Dy p — pgz

dpo _
dz rg

Perturbation. u = 0, p = po(z), pP=Dpo— fpogd2~

Linearisation.
ap dpo
-r 2 _—
ot tw dz
V-u =0
ou
— = —=Vp— pgz.
p@t p—pgz

ie. (pow.: + p6w2)tt - (5% + @5) (Pog — Poafw) =0
Slowly-varying assumption. py and p}, is effectively constant over a wavelength O(k~!).

Governing equation.

(0292 + N2 (&2 + 02)] w = 0

where the Brunt-Viiséli frequency N(z)? = — gzlg—g;.
8. Define the local frequency and wavenumber w = —0,0, k = V0, then given a local disper-
sion relation w = Q(k; x, t), have

dw _ _Ok; Ok, _ Okj

ox; ot aivj — Oz;

oo _ 0 (o . Ok _ w _ 09 Ok _ o9 Ok
s0 57 = 5 — (¢ - V)w, =% = oz, — 0z, 1€ 8z, — oz, T Co x> L€

17
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dx
E = C4 = VkQ
|, ~ Ot
d
—| k = —-ViQ
dtf,, v
d 0
a . - a + Cg . Vx.

Fermat’s principle is derived from the variational principle § fttf d(x,x,t;k)dt = 0 where
® =k -x — Q(k;x,t). Snell’s law follows when {2 = Q(k; 2).

9. In the frame of the source moving at U relative to the fluid, X = x — Ut = 0, —

Oilx — U - 0x so —iw, = —iw, —

U ik, ie w,=w, —U-k.
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